wordcloud.py 11.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Author: Andreas Christian Mueller <amueller@ais.uni-bonn.de>
# (c) 2012
# Modified by: Paul Nechifor <paul@nechifor.net>
#
# License: MIT

import random
import os
import re
import numpy as np
from operator import itemgetter

from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
from query_integral_image import query_integral_image

item1 = itemgetter(1)

FONT_PATH = "/usr/share/fonts/truetype/droid/DroidSansMono.ttf"
STOPWORDS = set([x.strip() for x in open(os.path.join(os.path.dirname(__file__),
                                                      'stopwords')).read().split('\n')])


def random_color_func(word, font_size, position, orientation, random_state=None):
    if random_state is None:
        random_state = random.Random()
    return "hsl(%d, 80%%, 50%%)" % random_state.randint(0, 255)


class WordCloud(object):
    """Word cloud object for generating and drawing.

    Parameters
    ----------
    font_path : string
        Font path to the font that will be used (OTF or TTF).
        Defaults to DroidSansMono path, but you might not have it.

    width : int (default=400)
        Width of the canvas.

    height : int (default=200)
        Height of the canvas.

    ranks_only : boolean (default=False)
        Only use the rank of the words, not the actual counts.

Andreas Mueller's avatar
Andreas Mueller committed
49
    prefer_horizontal : float (default=0.90)
50
51
52
53
54
55
56
        The ratio of times to try horizontal fitting as opposed to vertical.

    mask : nd-array or None (default=None)
        If not None, gives a binary mask on where to draw words.  In this case,
        width and height will be ignored and the shape of mask will be used
        instead.

Andreas Mueller's avatar
Andreas Mueller committed
57
    max_words : number (default=200)
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
        The maximum number of words.

    stopwords : set of strings
        The words that will be eliminated.

    Attributes
    ----------
    words_ : list of tuples (string, float)
        Word tokens with associated frequency.

    layout_ : list of tuples (string, int, (int, int), int, color))
        Encodes the fitted word cloud. Encodes for each word the string, font
        size, position, orientation and color.
    """

    def __init__(self, font_path=None, width=400, height=200, margin=5,
Andreas Mueller's avatar
Andreas Mueller committed
74
75
                 ranks_only=False, prefer_horizontal=0.9, mask=None, scale=1,
                 color_func=random_color_func, max_words=200, stopwords=None):
76
77
78
79
80
81
82
83
        if stopwords is None:
            stopwords = STOPWORDS
        if font_path is None:
            font_path = FONT_PATH
        self.font_path = font_path
        self.width = width
        self.height = height
        self.margin = margin
Andreas Mueller's avatar
Andreas Mueller committed
84
        self.ranks_only = ranks_only
85
86
87
88
        self.prefer_horizontal = prefer_horizontal
        self.mask = mask
        self.scale = scale
        self.color_func = color_func
Andreas Mueller's avatar
Andreas Mueller committed
89
90
        self.max_words = max_words
        self.stopwords = stopwords
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

    def fit_words(self, words):
        """Generate the positions for words.

        Parameters
        ----------
        words : array of tuples
            A tuple contains the word and its frequency.

        Returns
        -------
        layout_ : list of tuples (string, int, (int, int), int, color))
            Encodes the fitted word cloud. Encodes for each word the string, font
            size, position, orientation and color.

        Notes
        -----
        Larger canvases with make the code significantly slower. If you need a large
        word cloud, run this function with a lower canvas size, and draw it with a
        larger scale.

        In the current form it actually just uses the rank of the counts, i.e. the
        relative differences don't matter. Play with setting the font_size in the
        main loop for different styles.
        """

        if len(words) <= 0:
            print("We need at least 1 word to plot a word cloud, got %d."
                  % len(words))

        if self.mask is not None:
            width = self.mask.shape[1]
            height = self.mask.shape[0]
            # the order of the cumsum's is important for speed ?!
            integral = np.cumsum(np.cumsum(self.mask, axis=1), axis=0).astype(np.uint32)
        else:
Andreas Mueller's avatar
Andreas Mueller committed
127
            height, width = self.height, self.width
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
            integral = np.zeros((height, width), dtype=np.uint32)

        # create image
        img_grey = Image.new("L", (width, height))
        draw = ImageDraw.Draw(img_grey)
        img_array = np.asarray(img_grey)
        font_sizes, positions, orientations, colors = [], [], [], []

        # intitiallize font size "large enough"
        font_size = height

        # start drawing grey image
        for word, count in words:
            # alternative way to set the font size
            if not self.ranks_only:
                font_size = min(font_size, int(100 * np.log(count + 100)))
            while True:
                # try to find a position
                font = ImageFont.truetype(self.font_path, font_size)
                # transpose font optionally
Andreas Mueller's avatar
Andreas Mueller committed
148
                if random.random() < self.prefer_horizontal:
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
                    orientation = None
                else:
                    orientation = Image.ROTATE_90
                transposed_font = ImageFont.TransposedFont(font,
                                                           orientation=orientation)
                draw.setfont(transposed_font)
                # get size of resulting text
                box_size = draw.textsize(word)
                # find possible places using integral image:
                result = query_integral_image(integral, box_size[1] + self.margin,
                                              box_size[0] + self.margin)
                if result is not None or font_size == 0:
                    break
                # if we didn't find a place, make font smaller
                font_size -= 1

            if font_size == 0:
                # we were unable to draw any more
                break

            x, y = np.array(result) + self.margin // 2
            # actually draw the text
            draw.text((y, x), word, fill="white")
            positions.append((x, y))
            orientations.append(orientation)
            font_sizes.append(font_size)
            colors.append(self.color_func(word, font_size, (x, y), orientation))
            # recompute integral image
Andreas Mueller's avatar
Andreas Mueller committed
177
178
179
180
            if self.mask is None:
                img_array = np.asarray(img_grey)
            else:
                img_array = np.asarray(img_grey) + self.mask
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
            # recompute bottom right
            # the order of the cumsum's is important for speed ?!
            partial_integral = np.cumsum(np.cumsum(img_array[x:, y:], axis=1),
                                         axis=0)
            # paste recomputed part into old image
            # if x or y is zero it is a bit annoying
            if x > 0:
                if y > 0:
                    partial_integral += (integral[x - 1, y:]
                                         - integral[x - 1, y - 1])
                else:
                    partial_integral += integral[x - 1, y:]
            if y > 0:
                partial_integral += integral[x:, y - 1][:, np.newaxis]

            integral[x:, y:] = partial_integral

        self.layout_ = zip(words, font_sizes, positions, orientations, colors)
        return self.layout_

    def process_text(self, text):
        """Splits a long text into words, eliminates the stopwords.

        Parameters
        ----------
        text : string
            The text to be processed.

        Returns
        -------
        words : list of tuples (string, float)
            Word tokens with associated frequency.


        Notes
        -----
        There are better ways to do word tokenization, but I don't want to
        include all those things.
        """

        d = {}
        flags = re.UNICODE if type(text) is unicode else 0
        for word in re.findall(r"\w[\w']*", text, flags=flags):
            if word.isdigit():
                continue

            word_lower = word.lower()
            if word_lower in self.stopwords:
                continue

            # Look in lowercase dict.
            if word_lower in d:
                d2 = d[word_lower]
            else:
                d2 = {}
                d[word_lower] = d2

            # Look in any case dict.
            d2[word] = d2.get(word, 0) + 1

        d3 = {}
        for d2 in d.values():
            # Get the most popular case.
            first = max(d2.iteritems(), key=item1)[0]
            d3[first] = sum(d2.values())

        # merge plurals into the singular count (simple cases only)
        for key in d3.keys():
            if key.endswith('s'):
                key_singular = key[:-1]
                if key_singular in d3:
                    val_plural = d3[key]
                    val_singular = d3[key_singular]
                    d3[key_singular] = val_singular + val_plural
                    del d3[key]

        words = sorted(d3.iteritems(), key=item1, reverse=True)
Andreas Mueller's avatar
Andreas Mueller committed
258
        words = words[:self.max_words]
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
        maximum = float(max(d3.values()))
        for i, (word, count) in enumerate(words):
            words[i] = word, count / maximum

        self.words_ = words

        return words

    def generate(self, text):
        """Convenience function that calls process_text and fit_words.

        Returns
        -------
        self
        """
        self.process_text(text)
        self.fit_words(self.words_)
        return self

    def to_image(self):
        if not hasattr(self, "layout_"):
            raise ValueError("WordCloud has not been calculated, call generate first.")
        img = Image.new("RGB", (self.width * self.scale, self.height * self.scale))
        draw = ImageDraw.Draw(img)
        for (word, count), font_size, position, orientation, color in self.layout_:
            font = ImageFont.truetype(self.font_path, font_size * self.scale)
            transposed_font = ImageFont.TransposedFont(font,
                                                       orientation=orientation)
            draw.setfont(transposed_font)
            pos = (position[1] * self.scale, position[0] * self.scale)
            draw.text(pos, word, fill=color)
        return img

    def recolor(self, random_state=None, color_func=None):
        """Recolor existing layout.

        Applying a new coloring is much faster than generating the whole wordcloud.

        Parameters
        ----------
        random_state : RandomState or None, default=None
            If not None, a fixed random state is used.

        color_func : function or None, default=None
            Function to generate new color from word count, font size, position
            and orientation.  If None, self.color_func is used.

        Returns
        -------
        self
        """

        if color_func is None:
            color_func = self.color_func
        self.layout_ = [(word, font_size, position, orientation,
                         color_func(word, font_size, position, orientation, random_state))
                        for word, font_size, position, orientation, _ in self.layout_]
        return self

    def to_file(self, filename):
        """Export to image file.

        Parameters
        ----------
        filename : string
            Location to write to.

        Returns
        -------
        self
        """

        img = self.to_image()
        img.save(filename)
        return self

    def to_array(self):
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
Andreas Mueller's avatar
Andreas Mueller committed
343
        return np.array(self.to_image())
344

Andreas Mueller's avatar
Andreas Mueller committed
345
    def __array__(self):
346
347
348
349
350
351
352
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
Andreas Mueller's avatar
Andreas Mueller committed
353
        return self.to_array()
354
355
356

    def to_html(self):
        raise NotImplementedError("FIXME!!!")