wordcloud.py 19.1 KB
Newer Older
Andreas Mueller's avatar
Andreas Mueller committed
1
2
# Author: Andreas Christian Mueller <t3kcit@gmail.com>
#
3
4
5
6
7
# (c) 2012
# Modified by: Paul Nechifor <paul@nechifor.net>
#
# License: MIT

Andreas Mueller's avatar
Andreas Mueller committed
8
import warnings
9
from random import Random
10
11
import os
import re
12
import sys
13
import colorsys
14
15
16
17
import numpy as np
from operator import itemgetter

from PIL import Image
18
from PIL import ImageColor
19
20
from PIL import ImageDraw
from PIL import ImageFont
21

22
from .query_integral_image import query_integral_image
23
24
25

item1 = itemgetter(1)

26
27
FONT_PATH = os.environ.get("FONT_PATH", os.path.join(os.path.dirname(__file__),
                                                     "DroidSansMono.ttf"))
28
29
30
31
STOPWORDS = set([x.strip() for x in open(os.path.join(os.path.dirname(__file__),
                                                      'stopwords')).read().split('\n')])


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class IntegralOccupancyMap(object):
    def __init__(self, height, width, mask):
        self.height = height
        self.width = width
        if mask is not None:
            # the order of the cumsum's is important for speed ?!
            self.integral = np.cumsum(np.cumsum(255 * mask, axis=1),
                                      axis=0).astype(np.uint32)
        else:
            self.integral = np.zeros((height, width), dtype=np.uint32)

    def sample_position(self, size_x, size_y, random_state):
        return query_integral_image(self.integral, size_x, size_y, random_state)

    def update(self, img_array, pos_x, pos_y):
        partial_integral = np.cumsum(np.cumsum(img_array[pos_x:, pos_y:], axis=1),
                                     axis=0)
        # paste recomputed part into old image
        # if x or y is zero it is a bit annoying
        if pos_x > 0:
            if pos_y > 0:
                partial_integral += (self.integral[pos_x - 1, pos_y:]
                                     - self.integral[pos_x - 1, pos_y - 1])
            else:
                partial_integral += self.integral[pos_x - 1, pos_y:]
        if pos_y > 0:
            partial_integral += self.integral[pos_x:, pos_y - 1][:, np.newaxis]

        self.integral[pos_x:, pos_y:] = partial_integral


Andreas Mueller's avatar
Andreas Mueller committed
63
64
def random_color_func(word=None, font_size=None, position=None,
                      orientation=None, font_path=None, random_state=None):
Andreas Mueller's avatar
Andreas Mueller committed
65
66
67
68
69
70
71
72
73
74
75
76
77
    """Random hue color generation.

    Default coloring method. This just picks a random hue with value 80% and
    lumination 50%.

    Parameters
    ----------
    word, font_size, position, orientation  : ignored.

    random_state : random.Random object or None, (default=None)
        If a random object is given, this is used for generating random numbers.

    """
78
    if random_state is None:
79
        random_state = Random()
80
81
    return "hsl(%d, 80%%, 50%%)" % random_state.randint(0, 255)

82

83
84
85
86
87
88
89
90
91
def get_single_color_func(color):
    """Create a color function which returns a single hue and saturation with.
    different values (HSV). Accepted values are color strings as usable by PIL/Pillow.

    >>> color_func1 = get_single_color_func('deepskyblue')
    >>> color_func2 = get_single_color_func('#00b4d2')
    """
    old_r, old_g, old_b = ImageColor.getrgb(color)
    rgb_max = 255.
92
93
    h, s, v = colorsys.rgb_to_hsv(old_r / rgb_max, old_g / rgb_max, old_b / rgb_max)

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    def single_color_func(word=None, font_size=None, position=None,
                          orientation=None, font_path=None, random_state=None):
        """Random color generation.

        Additional coloring method. It picks a random value with hue and
        saturation based on the color given to the generating function.

        Parameters
        ----------
        word, font_size, position, orientation  : ignored.

        random_state : random.Random object or None, (default=None)
          If a random object is given, this is used for generating random numbers.

        """
        if random_state is None:
            random_state = Random()
        r, g, b = colorsys.hsv_to_rgb(h, s, random_state.uniform(0.2, 1))
        return 'rgb({:.0f}, {:.0f}, {:.0f})'.format(r * rgb_max, g * rgb_max, b * rgb_max)
    return single_color_func

115
116
117
118
119
120
121
122

class WordCloud(object):
    """Word cloud object for generating and drawing.

    Parameters
    ----------
    font_path : string
        Font path to the font that will be used (OTF or TTF).
Andreas Mueller's avatar
Andreas Mueller committed
123
124
        Defaults to DroidSansMono path on a Linux machine. If you are on
        another OS or don't have this font, you need to adjust this path.
125
126
127
128
129
130
131

    width : int (default=400)
        Width of the canvas.

    height : int (default=200)
        Height of the canvas.

Andreas Mueller's avatar
Andreas Mueller committed
132
    prefer_horizontal : float (default=0.90)
133
134
135
        The ratio of times to try horizontal fitting as opposed to vertical.

    mask : nd-array or None (default=None)
Andreas Mueller's avatar
Andreas Mueller committed
136
137
138
139
140
        If not None, gives a binary mask on where to draw words. If mask is not
        None, width and height will be ignored and the shape of mask will be
        used instead. All white (#FF or #FFFFFF) entries will be considerd
        "masked out" while other entries will be free to draw on. [This
        changed in the most recent version!]
141

142
143
144
145
146
    scale : float (default=1)
        Scaling between computation and drawing. For large word-cloud images,
        using scale instead of larger canvas size is significantly faster, but
        might lead to a coarser fit for the words.

147
148
149
150
151
152
153
154
    min_font_size : int (default=4)
        Smallest font size to use. Will stop when there is no more room in this
        size.

    font_step : int (default=1)
        Step size for the font. font_step > 1 might speed up computation but
        give a worse fit.

Andreas Mueller's avatar
Andreas Mueller committed
155
    max_words : number (default=200)
156
157
158
159
160
        The maximum number of words.

    stopwords : set of strings
        The words that will be eliminated.

161
162
163
    background_color : color value (default="black")
        Background color for the word cloud image.

Andreas Mueller's avatar
Andreas Mueller committed
164
165
166
    max_font_size : int or None (default=None)
        Maximum font size for the largest word. If None, height of the image is
        used.
167

168
    mode : string (default="RGB")
169
170
        Transparent background will be generated when mode is "RGBA" and
        background_color is None.
Andreas Mueller's avatar
Andreas Mueller committed
171

172
173
174
175
176
177
178
    relative_scaling : float (default=0)
        Importance of relative word frequencies for font-size.
        With relative_scaling=0, only word-ranks are considered.
        With relative_scaling=1, a word that is twice as frequent will have twice the size.
        If you want to consider the word frequencies and not only their rank, relative_scaling
        around .5 often looks good.

179
180
    Attributes
    ----------
Andreas Mueller's avatar
Andreas Mueller committed
181
    ``words_``: list of tuples (string, float)
182
183
        Word tokens with associated frequency.

Andreas Mueller's avatar
Andreas Mueller committed
184
    ``layout_`` : list of tuples (string, int, (int, int), int, color))
185
186
        Encodes the fitted word cloud. Encodes for each word the string, font
        size, position, orientation and color.
187
188
189
190
191
192
193
194
195

    Notes
    -----
    Larger canvases with make the code significantly slower. If you need a large
    word cloud, try a lower canvas size, and set the scale parameter.

    The algorithm might give more weight to the ranking of the words
    than their actual frequencies, depending on the ``max_font_size`` and the
    scaling heuristic.
196
197
    """

198
    def __init__(self, font_path=None, width=400, height=200, margin=2,
199
                 ranks_only=None, prefer_horizontal=0.9, mask=None, scale=1,
200
201
                 color_func=random_color_func, max_words=200, min_font_size=4,
                 stopwords=None, random_state=None, background_color='black',
202
                 max_font_size=None, font_step=1, mode="RGB", relative_scaling=0):
203
204
205
206
207
208
209
210
211
212
        if font_path is None:
            font_path = FONT_PATH
        self.font_path = font_path
        self.width = width
        self.height = height
        self.margin = margin
        self.prefer_horizontal = prefer_horizontal
        self.mask = mask
        self.scale = scale
        self.color_func = color_func
Andreas Mueller's avatar
Andreas Mueller committed
213
        self.max_words = max_words
214
        self.stopwords = stopwords or STOPWORDS
215
216
        self.min_font_size = min_font_size
        self.font_step = font_step
217
218
219
        if isinstance(random_state, int):
            random_state = Random(random_state)
        self.random_state = random_state
220
        self.background_color = background_color
Andreas Mueller's avatar
Andreas Mueller committed
221
222
223
        if max_font_size is None:
            max_font_size = height
        self.max_font_size = max_font_size
224
        self.mode = mode
225
226
227
228
229
230
231
        if relative_scaling < 0 or relative_scaling > 1:
            raise ValueError("relative_scaling needs to be between 0 and 1, got %f."
                             % relative_scaling)
        self.relative_scaling = relative_scaling
        if ranks_only is not None:
            warnings.warn("ranks_only is deprecated and will be removed as"
                          " it had no effect. Look into relative_scaling.", DeprecationWarning)
232

233
234
235
236
    def fit_words(self, frequencies):
        """Create a word_cloud from words and frequencies.

        Alias to generate_from_frequencies.
237
238
239

        Parameters
        ----------
240
        frequencies : array of tuples
241
242
243
244
            A tuple contains the word and its frequency.

        Returns
        -------
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
        self
        """
        return self.generate_from_frequencies(frequencies)

    def generate_from_frequencies(self, frequencies):
        """Create a word_cloud from words and frequencies.

        Parameters
        ----------
        frequencies : array of tuples
            A tuple contains the word and its frequency.

        Returns
        -------
        self
260
261

        """
262
        # make sure frequencies are sorted and normalized
263
        frequencies = sorted(frequencies, key=item1, reverse=True)
264
265
        frequencies = frequencies[:self.max_words]
        # largest entry will be 1
266
        max_frequency = float(frequencies[0][1])
267

268
        frequencies = [(word, freq / max_frequency) for word, freq in frequencies]
269

270
271
        self.words_ = frequencies

272
273
274
275
        if self.random_state is not None:
            random_state = self.random_state
        else:
            random_state = Random()
276

277
        if len(frequencies) <= 0:
278
            print("We need at least 1 word to plot a word cloud, got %d."
279
                  % len(frequencies))
280
281

        if self.mask is not None:
282
            mask = self.mask
Andreas Mueller's avatar
Andreas Mueller committed
283
284
            width = mask.shape[1]
            height = mask.shape[0]
285
            if mask.dtype.kind == 'f':
Andreas Mueller's avatar
Andreas Mueller committed
286
                warnings.warn("mask image should be unsigned byte between 0 and"
Andreas Mueller's avatar
Andreas Mueller committed
287
                              " 255. Got a float array")
Andreas Mueller's avatar
Andreas Mueller committed
288
289
290
            if mask.ndim == 2:
                boolean_mask = mask == 255
            elif mask.ndim == 3:
Andreas Mueller's avatar
Andreas Mueller committed
291
292
                # if all channels are white, mask out
                boolean_mask = np.all(mask[:, :, :3] == 255, axis=-1)
Andreas Mueller's avatar
Andreas Mueller committed
293
            else:
294
                raise ValueError("Got mask of invalid shape: %s" % str(mask.shape))
295
        else:
296
            boolean_mask = None
Andreas Mueller's avatar
Andreas Mueller committed
297
            height, width = self.height, self.width
298
        occupancy = IntegralOccupancyMap(height, width, boolean_mask)
299
300
301
302
303
304
305

        # create image
        img_grey = Image.new("L", (width, height))
        draw = ImageDraw.Draw(img_grey)
        img_array = np.asarray(img_grey)
        font_sizes, positions, orientations, colors = [], [], [], []

Andreas Mueller's avatar
Andreas Mueller committed
306
        font_size = self.max_font_size
307
        last_freq = 1.
308
309

        # start drawing grey image
310
        for word, freq in frequencies:
311
312
313
314
            # select the font size
            rs = self.relative_scaling
            if rs != 0:
                font_size = int(round((rs * (freq / float(last_freq)) + (1 - rs)) * font_size))
315
316
317
318
            while True:
                # try to find a position
                font = ImageFont.truetype(self.font_path, font_size)
                # transpose font optionally
319
                if random_state.random() < self.prefer_horizontal:
320
321
322
323
324
325
                    orientation = None
                else:
                    orientation = Image.ROTATE_90
                transposed_font = ImageFont.TransposedFont(font,
                                                           orientation=orientation)
                # get size of resulting text
326
                box_size = draw.textsize(word, font=transposed_font)
327
                # find possible places using integral image:
328
329
330
                result = occupancy.sample_position(box_size[1] + self.margin,
                                                   box_size[0] + self.margin,
                                                   random_state)
331
332
333
                if result is not None or font_size == 0:
                    break
                # if we didn't find a place, make font smaller
334
                font_size -= self.font_step
335

336
            if font_size < self.min_font_size:
337
338
339
340
341
                # we were unable to draw any more
                break

            x, y = np.array(result) + self.margin // 2
            # actually draw the text
342
            draw.text((y, x), word, fill="white", font=transposed_font)
343
344
345
            positions.append((x, y))
            orientations.append(orientation)
            font_sizes.append(font_size)
Andreas Mueller's avatar
Andreas Mueller committed
346
347
348
349
350
            colors.append(self.color_func(word, font_size=font_size,
                                          position=(x, y),
                                          orientation=orientation,
                                          random_state=random_state,
                                          font_path=self.font_path))
351
            # recompute integral image
Andreas Mueller's avatar
Andreas Mueller committed
352
353
354
            if self.mask is None:
                img_array = np.asarray(img_grey)
            else:
Andreas Mueller's avatar
Andreas Mueller committed
355
                img_array = np.asarray(img_grey) + boolean_mask
356
357
            # recompute bottom right
            # the order of the cumsum's is important for speed ?!
358
            occupancy.update(img_array, x, y)
359
            last_freq = freq
360

361
362
        self.layout_ = list(zip(frequencies, font_sizes, positions, orientations, colors))
        return self
363

364
    def process_text(self, text):
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        """Splits a long text into words, eliminates the stopwords.

        Parameters
        ----------
        text : string
            The text to be processed.

        Returns
        -------
        words : list of tuples (string, float)
            Word tokens with associated frequency.

        Notes
        -----
        There are better ways to do word tokenization, but I don't want to
        include all those things.
        """

383
        self.stopwords_lower_ = set(map(str.lower, self.stopwords))
384

385
        d = {}
386
387
        flags = (re.UNICODE if sys.version < '3' and type(text) is unicode
                 else 0)
Raphael Boidol's avatar
Raphael Boidol committed
388
        for word in re.findall(r"\w[\w']+", text, flags=flags):
389
390
391
392
            if word.isdigit():
                continue

            word_lower = word.lower()
393
            if word_lower in self.stopwords_lower_:
394
395
396
                continue

            # Look in lowercase dict.
397
            try:
398
                d2 = d[word_lower]
399
            except KeyError:
400
401
402
403
404
405
                d2 = {}
                d[word_lower] = d2

            # Look in any case dict.
            d2[word] = d2.get(word, 0) + 1

406
407
408
409
410
411
412
413
414
415
416
417
        # merge plurals into the singular count (simple cases only)
        for key in list(d.keys()):
            if key.endswith('s'):
                key_singular = key[:-1]
                if key_singular in d:
                    dict_plural = d[key]
                    dict_singular = d[key_singular]
                    for word, count in dict_plural.items():
                        singular = word[:-1]
                        dict_singular[singular] = dict_singular.get(singular, 0) + count
                    del d[key]

418
419
420
        d3 = {}
        for d2 in d.values():
            # Get the most popular case.
defacto133's avatar
defacto133 committed
421
            first = max(d2.items(), key=item1)[0]
422
423
            d3[first] = sum(d2.values())

424
        return d3.items()
425

426
    def generate_from_text(self, text):
427
428
        """Generate wordcloud from text.

429
        Calls process_text and generate_from_frequencies.
430
431
432
433
434

        Returns
        -------
        self
        """
435
436
        words = self.process_text(text)
        self.generate_from_frequencies(words)
437
438
        return self

439
440
441
442
443
    def generate(self, text):
        """Generate wordcloud from text.

        Alias to generate_from_text.

444
        Calls process_text and generate_from_frequencies.
445
446
447
448
449
450
451

        Returns
        -------
        self
        """
        return self.generate_from_text(text)

452
    def _check_generated(self):
Andreas Mueller's avatar
Andreas Mueller committed
453
        """Check if ``layout_`` was computed, otherwise raise error."""
454
455
        if not hasattr(self, "layout_"):
            raise ValueError("WordCloud has not been calculated, call generate first.")
456
457
458
459
460
461
462
463
464

    def to_image(self):
        self._check_generated()
        if self.mask is not None:
            width = self.mask.shape[1]
            height = self.mask.shape[0]
        else:
            height, width = self.height, self.width

465
        img = Image.new(self.mode, (int(width * self.scale), int(height * self.scale)),
466
                        self.background_color)
467
468
        draw = ImageDraw.Draw(img)
        for (word, count), font_size, position, orientation, color in self.layout_:
469
            font = ImageFont.truetype(self.font_path, int(font_size * self.scale))
470
471
            transposed_font = ImageFont.TransposedFont(font,
                                                       orientation=orientation)
472
            pos = (int(position[1] * self.scale), int(position[0] * self.scale))
473
            draw.text(pos, word, fill=color, font=transposed_font)
474
475
476
477
478
479
480
481
482
        return img

    def recolor(self, random_state=None, color_func=None):
        """Recolor existing layout.

        Applying a new coloring is much faster than generating the whole wordcloud.

        Parameters
        ----------
483
484
485
        random_state : RandomState, int, or None, default=None
            If not None, a fixed random state is used. If an int is given, this
            is used as seed for a random.Random state.
486
487
488
489
490
491
492
493
494

        color_func : function or None, default=None
            Function to generate new color from word count, font size, position
            and orientation.  If None, self.color_func is used.

        Returns
        -------
        self
        """
495
496
        if isinstance(random_state, int):
            random_state = Random(random_state)
497
        self._check_generated()
498
499
500

        if color_func is None:
            color_func = self.color_func
501
502
        self.layout_ = [(word_freq, font_size, position, orientation,
                         color_func(word=word_freq[0], font_size=font_size,
Andreas Mueller's avatar
Andreas Mueller committed
503
504
                                    position=position, orientation=orientation,
                                    random_state=random_state, font_path=self.font_path))
505
                        for word_freq, font_size, position, orientation, _ in self.layout_]
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
        return self

    def to_file(self, filename):
        """Export to image file.

        Parameters
        ----------
        filename : string
            Location to write to.

        Returns
        -------
        self
        """

        img = self.to_image()
        img.save(filename)
        return self

    def to_array(self):
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
Andreas Mueller's avatar
Andreas Mueller committed
533
        return np.array(self.to_image())
534

Andreas Mueller's avatar
Andreas Mueller committed
535
    def __array__(self):
536
537
538
539
540
541
542
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
Andreas Mueller's avatar
Andreas Mueller committed
543
        return self.to_array()
544
545
546

    def to_html(self):
        raise NotImplementedError("FIXME!!!")