wordcloud.py 16.6 KB
Newer Older
Andreas Mueller's avatar
Andreas Mueller committed
1
2
# Author: Andreas Christian Mueller <t3kcit@gmail.com>
#
3
4
5
6
7
# (c) 2012
# Modified by: Paul Nechifor <paul@nechifor.net>
#
# License: MIT

Andreas Mueller's avatar
Andreas Mueller committed
8
import warnings
9
from random import Random
10
11
import os
import re
12
import sys
13
14
15
16
17
18
import numpy as np
from operator import itemgetter

from PIL import Image
from PIL import ImageDraw
from PIL import ImageFont
19

20
from .query_integral_image import query_integral_image
21
22
23

item1 = itemgetter(1)

24
FONT_PATH = os.environ.get("FONT_PATH", os.path.join(os.path.dirname(__file__), "DroidSansMono.ttf"))
25
26
27
28
STOPWORDS = set([x.strip() for x in open(os.path.join(os.path.dirname(__file__),
                                                      'stopwords')).read().split('\n')])


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
class IntegralOccupancyMap(object):
    def __init__(self, height, width, mask):
        self.height = height
        self.width = width
        if mask is not None:
            # the order of the cumsum's is important for speed ?!
            self.integral = np.cumsum(np.cumsum(255 * mask, axis=1),
                                      axis=0).astype(np.uint32)
        else:
            self.integral = np.zeros((height, width), dtype=np.uint32)

    def sample_position(self, size_x, size_y, random_state):
        return query_integral_image(self.integral, size_x, size_y, random_state)

    def update(self, img_array, pos_x, pos_y):
        partial_integral = np.cumsum(np.cumsum(img_array[pos_x:, pos_y:], axis=1),
                                     axis=0)
        # paste recomputed part into old image
        # if x or y is zero it is a bit annoying
        if pos_x > 0:
            if pos_y > 0:
                partial_integral += (self.integral[pos_x - 1, pos_y:]
                                     - self.integral[pos_x - 1, pos_y - 1])
            else:
                partial_integral += self.integral[pos_x - 1, pos_y:]
        if pos_y > 0:
            partial_integral += self.integral[pos_x:, pos_y - 1][:, np.newaxis]

        self.integral[pos_x:, pos_y:] = partial_integral


Andreas Mueller's avatar
Andreas Mueller committed
60
61
def random_color_func(word=None, font_size=None, position=None,
                      orientation=None, font_path=None, random_state=None):
Andreas Mueller's avatar
Andreas Mueller committed
62
63
64
65
66
67
68
69
70
71
72
73
74
    """Random hue color generation.

    Default coloring method. This just picks a random hue with value 80% and
    lumination 50%.

    Parameters
    ----------
    word, font_size, position, orientation  : ignored.

    random_state : random.Random object or None, (default=None)
        If a random object is given, this is used for generating random numbers.

    """
75
    if random_state is None:
76
        random_state = Random()
77
78
79
80
81
82
83
84
85
86
    return "hsl(%d, 80%%, 50%%)" % random_state.randint(0, 255)


class WordCloud(object):
    """Word cloud object for generating and drawing.

    Parameters
    ----------
    font_path : string
        Font path to the font that will be used (OTF or TTF).
Andreas Mueller's avatar
Andreas Mueller committed
87
88
        Defaults to DroidSansMono path on a Linux machine. If you are on
        another OS or don't have this font, you need to adjust this path.
89
90
91
92
93
94
95
96
97
98

    width : int (default=400)
        Width of the canvas.

    height : int (default=200)
        Height of the canvas.

    ranks_only : boolean (default=False)
        Only use the rank of the words, not the actual counts.

Andreas Mueller's avatar
Andreas Mueller committed
99
    prefer_horizontal : float (default=0.90)
100
101
102
        The ratio of times to try horizontal fitting as opposed to vertical.

    mask : nd-array or None (default=None)
Andreas Mueller's avatar
Andreas Mueller committed
103
104
105
106
107
        If not None, gives a binary mask on where to draw words. If mask is not
        None, width and height will be ignored and the shape of mask will be
        used instead. All white (#FF or #FFFFFF) entries will be considerd
        "masked out" while other entries will be free to draw on. [This
        changed in the most recent version!]
108

109
110
111
112
113
    scale : float (default=1)
        Scaling between computation and drawing. For large word-cloud images,
        using scale instead of larger canvas size is significantly faster, but
        might lead to a coarser fit for the words.

114
115
116
117
118
119
120
121
    min_font_size : int (default=4)
        Smallest font size to use. Will stop when there is no more room in this
        size.

    font_step : int (default=1)
        Step size for the font. font_step > 1 might speed up computation but
        give a worse fit.

Andreas Mueller's avatar
Andreas Mueller committed
122
    max_words : number (default=200)
123
124
125
126
127
        The maximum number of words.

    stopwords : set of strings
        The words that will be eliminated.

128
129
130
    background_color : color value (default="black")
        Background color for the word cloud image.

Andreas Mueller's avatar
Andreas Mueller committed
131
132
133
    max_font_size : int or None (default=None)
        Maximum font size for the largest word. If None, height of the image is
        used.
134

135
136
137
    mode: string (default="RGB")
        Transparent background will be generated when mode is "RGBA" and
        background_color is None.
Andreas Mueller's avatar
Andreas Mueller committed
138

139
140
    Attributes
    ----------
Andreas Mueller's avatar
Andreas Mueller committed
141
    ``words_``: list of tuples (string, float)
142
143
        Word tokens with associated frequency.

Andreas Mueller's avatar
Andreas Mueller committed
144
    ``layout_`` : list of tuples (string, int, (int, int), int, color))
145
146
        Encodes the fitted word cloud. Encodes for each word the string, font
        size, position, orientation and color.
147
148
149
150
151
152
153
154
155

    Notes
    -----
    Larger canvases with make the code significantly slower. If you need a large
    word cloud, try a lower canvas size, and set the scale parameter.

    The algorithm might give more weight to the ranking of the words
    than their actual frequencies, depending on the ``max_font_size`` and the
    scaling heuristic.
156
157
    """

158
    def __init__(self, font_path=None, width=400, height=200, margin=2,
Andreas Mueller's avatar
Andreas Mueller committed
159
                 ranks_only=False, prefer_horizontal=0.9, mask=None, scale=1,
160
161
162
                 color_func=random_color_func, max_words=200, min_font_size=4,
                 stopwords=None, random_state=None, background_color='black',
                 max_font_size=None, font_step=1, mode="RGB"):
163
164
165
166
167
168
169
170
        if stopwords is None:
            stopwords = STOPWORDS
        if font_path is None:
            font_path = FONT_PATH
        self.font_path = font_path
        self.width = width
        self.height = height
        self.margin = margin
Andreas Mueller's avatar
Andreas Mueller committed
171
        self.ranks_only = ranks_only
172
173
174
175
        self.prefer_horizontal = prefer_horizontal
        self.mask = mask
        self.scale = scale
        self.color_func = color_func
Andreas Mueller's avatar
Andreas Mueller committed
176
177
        self.max_words = max_words
        self.stopwords = stopwords
178
179
        self.min_font_size = min_font_size
        self.font_step = font_step
180
181
182
        if isinstance(random_state, int):
            random_state = Random(random_state)
        self.random_state = random_state
183
        self.background_color = background_color
Andreas Mueller's avatar
Andreas Mueller committed
184
185
186
        if max_font_size is None:
            max_font_size = height
        self.max_font_size = max_font_size
187
        self.mode = mode
188

189
190
191
192
    def fit_words(self, frequencies):
        """Create a word_cloud from words and frequencies.

        Alias to generate_from_frequencies.
193
194
195

        Parameters
        ----------
196
        frequencies : array of tuples
197
198
199
200
            A tuple contains the word and its frequency.

        Returns
        -------
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
        self
        """
        return self.generate_from_frequencies(frequencies)

    def generate_from_frequencies(self, frequencies):
        """Create a word_cloud from words and frequencies.

        Parameters
        ----------
        frequencies : array of tuples
            A tuple contains the word and its frequency.

        Returns
        -------
        self
216
217

        """
218
219
220
221
        if self.random_state is not None:
            random_state = self.random_state
        else:
            random_state = Random()
222

223
        if len(frequencies) <= 0:
224
            print("We need at least 1 word to plot a word cloud, got %d."
225
                  % len(frequencies))
226
227

        if self.mask is not None:
228
            mask = self.mask
Andreas Mueller's avatar
Andreas Mueller committed
229
230
            width = mask.shape[1]
            height = mask.shape[0]
231
            if mask.dtype.kind == 'f':
Andreas Mueller's avatar
Andreas Mueller committed
232
                warnings.warn("mask image should be unsigned byte between 0 and"
Andreas Mueller's avatar
Andreas Mueller committed
233
                              " 255. Got a float array")
Andreas Mueller's avatar
Andreas Mueller committed
234
235
236
            if mask.ndim == 2:
                boolean_mask = mask == 255
            elif mask.ndim == 3:
Andreas Mueller's avatar
Andreas Mueller committed
237
238
                # if all channels are white, mask out
                boolean_mask = np.all(mask[:, :, :3] == 255, axis=-1)
Andreas Mueller's avatar
Andreas Mueller committed
239
            else:
240
                raise ValueError("Got mask of invalid shape: %s" % str(mask.shape))
241
        else:
242
            boolean_mask = None
Andreas Mueller's avatar
Andreas Mueller committed
243
            height, width = self.height, self.width
244
        occupancy = IntegralOccupancyMap(height, width, boolean_mask)
245
246
247
248
249
250
251

        # create image
        img_grey = Image.new("L", (width, height))
        draw = ImageDraw.Draw(img_grey)
        img_array = np.asarray(img_grey)
        font_sizes, positions, orientations, colors = [], [], [], []

Andreas Mueller's avatar
Andreas Mueller committed
252
        font_size = self.max_font_size
253
254

        # start drawing grey image
255
        for word, count in frequencies:
256
257
258
259
260
261
262
            # alternative way to set the font size
            if not self.ranks_only:
                font_size = min(font_size, int(100 * np.log(count + 100)))
            while True:
                # try to find a position
                font = ImageFont.truetype(self.font_path, font_size)
                # transpose font optionally
263
                if random_state.random() < self.prefer_horizontal:
264
265
266
267
268
269
270
271
272
                    orientation = None
                else:
                    orientation = Image.ROTATE_90
                transposed_font = ImageFont.TransposedFont(font,
                                                           orientation=orientation)
                draw.setfont(transposed_font)
                # get size of resulting text
                box_size = draw.textsize(word)
                # find possible places using integral image:
273
274
275
                result = occupancy.sample_position(box_size[1] + self.margin,
                                                   box_size[0] + self.margin,
                                                   random_state)
276
277
278
                if result is not None or font_size == 0:
                    break
                # if we didn't find a place, make font smaller
279
                font_size -= self.font_step
280

281
            if font_size < self.min_font_size:
282
283
284
285
286
287
288
289
290
                # we were unable to draw any more
                break

            x, y = np.array(result) + self.margin // 2
            # actually draw the text
            draw.text((y, x), word, fill="white")
            positions.append((x, y))
            orientations.append(orientation)
            font_sizes.append(font_size)
Andreas Mueller's avatar
Andreas Mueller committed
291
292
293
294
295
            colors.append(self.color_func(word, font_size=font_size,
                                          position=(x, y),
                                          orientation=orientation,
                                          random_state=random_state,
                                          font_path=self.font_path))
296
            # recompute integral image
Andreas Mueller's avatar
Andreas Mueller committed
297
298
299
            if self.mask is None:
                img_array = np.asarray(img_grey)
            else:
Andreas Mueller's avatar
Andreas Mueller committed
300
                img_array = np.asarray(img_grey) + boolean_mask
301
302
            # recompute bottom right
            # the order of the cumsum's is important for speed ?!
303
            occupancy.update(img_array, x, y)
304

305
306
        self.layout_ = list(zip(frequencies, font_sizes, positions, orientations, colors))
        return self
307

308
    def process_text(self, text):
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
        """Splits a long text into words, eliminates the stopwords.

        Parameters
        ----------
        text : string
            The text to be processed.

        Returns
        -------
        words : list of tuples (string, float)
            Word tokens with associated frequency.

        Notes
        -----
        There are better ways to do word tokenization, but I don't want to
        include all those things.
        """

        d = {}
328
329
        flags = (re.UNICODE if sys.version < '3' and type(text) is unicode
                 else 0)
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
        for word in re.findall(r"\w[\w']*", text, flags=flags):
            if word.isdigit():
                continue

            word_lower = word.lower()
            if word_lower in self.stopwords:
                continue

            # Look in lowercase dict.
            if word_lower in d:
                d2 = d[word_lower]
            else:
                d2 = {}
                d[word_lower] = d2

            # Look in any case dict.
            d2[word] = d2.get(word, 0) + 1

        d3 = {}
        for d2 in d.values():
            # Get the most popular case.
defacto133's avatar
defacto133 committed
351
            first = max(d2.items(), key=item1)[0]
352
353
354
            d3[first] = sum(d2.values())

        # merge plurals into the singular count (simple cases only)
defacto133's avatar
defacto133 committed
355
        for key in list(d3.keys()):
356
357
358
359
360
361
362
363
            if key.endswith('s'):
                key_singular = key[:-1]
                if key_singular in d3:
                    val_plural = d3[key]
                    val_singular = d3[key_singular]
                    d3[key_singular] = val_singular + val_plural
                    del d3[key]

defacto133's avatar
defacto133 committed
364
        words = sorted(d3.items(), key=item1, reverse=True)
Andreas Mueller's avatar
Andreas Mueller committed
365
        words = words[:self.max_words]
366
367
368
369
370
371
372
373
        maximum = float(max(d3.values()))
        for i, (word, count) in enumerate(words):
            words[i] = word, count / maximum

        self.words_ = words

        return words

374
    def generate_from_text(self, text):
375
376
        """Generate wordcloud from text.

377
        Calls process_text and fit_words.
378
379
380
381
382

        Returns
        -------
        self
        """
383
384
        self.process_text(text)
        self.fit_words(self.words_)
385
386
        return self

387
388
389
390
391
392
393
394
395
396
397
398
399
    def generate(self, text):
        """Generate wordcloud from text.

        Alias to generate_from_text.

        Calls process_text and fit_words.

        Returns
        -------
        self
        """
        return self.generate_from_text(text)

400
    def _check_generated(self):
Andreas Mueller's avatar
Andreas Mueller committed
401
        """Check if ``layout_`` was computed, otherwise raise error."""
402
403
        if not hasattr(self, "layout_"):
            raise ValueError("WordCloud has not been calculated, call generate first.")
404
405
406
407
408
409
410
411
412

    def to_image(self):
        self._check_generated()
        if self.mask is not None:
            width = self.mask.shape[1]
            height = self.mask.shape[0]
        else:
            height, width = self.height, self.width

413
414
        img = Image.new(self.mode, (width * self.scale, height * self.scale),
                        self.background_color)
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        draw = ImageDraw.Draw(img)
        for (word, count), font_size, position, orientation, color in self.layout_:
            font = ImageFont.truetype(self.font_path, font_size * self.scale)
            transposed_font = ImageFont.TransposedFont(font,
                                                       orientation=orientation)
            draw.setfont(transposed_font)
            pos = (position[1] * self.scale, position[0] * self.scale)
            draw.text(pos, word, fill=color)
        return img

    def recolor(self, random_state=None, color_func=None):
        """Recolor existing layout.

        Applying a new coloring is much faster than generating the whole wordcloud.

        Parameters
        ----------
432
433
434
        random_state : RandomState, int, or None, default=None
            If not None, a fixed random state is used. If an int is given, this
            is used as seed for a random.Random state.
435
436
437
438
439
440
441
442
443

        color_func : function or None, default=None
            Function to generate new color from word count, font size, position
            and orientation.  If None, self.color_func is used.

        Returns
        -------
        self
        """
444
445
        if isinstance(random_state, int):
            random_state = Random(random_state)
446
        self._check_generated()
447
448
449

        if color_func is None:
            color_func = self.color_func
450
451
        self.layout_ = [(word_freq, font_size, position, orientation,
                         color_func(word=word_freq[0], font_size=font_size,
Andreas Mueller's avatar
Andreas Mueller committed
452
453
                                    position=position, orientation=orientation,
                                    random_state=random_state, font_path=self.font_path))
454
                        for word_freq, font_size, position, orientation, _ in self.layout_]
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
        return self

    def to_file(self, filename):
        """Export to image file.

        Parameters
        ----------
        filename : string
            Location to write to.

        Returns
        -------
        self
        """

        img = self.to_image()
        img.save(filename)
        return self

    def to_array(self):
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
Andreas Mueller's avatar
Andreas Mueller committed
482
        return np.array(self.to_image())
483

Andreas Mueller's avatar
Andreas Mueller committed
484
    def __array__(self):
485
486
487
488
489
490
491
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
Andreas Mueller's avatar
Andreas Mueller committed
492
        return self.to_array()
493
494
495

    def to_html(self):
        raise NotImplementedError("FIXME!!!")