wordcloud.py 19.2 KB
Newer Older
Andreas Mueller's avatar
Andreas Mueller committed
1
2
# Author: Andreas Christian Mueller <t3kcit@gmail.com>
#
3
4
5
6
7
# (c) 2012
# Modified by: Paul Nechifor <paul@nechifor.net>
#
# License: MIT

Andreas Mueller's avatar
Andreas Mueller committed
8
import warnings
9
from random import Random
10
11
import os
import re
12
import sys
13
import colorsys
14
15
16
17
import numpy as np
from operator import itemgetter

from PIL import Image
18
from PIL import ImageColor
19
20
from PIL import ImageDraw
from PIL import ImageFont
21

22
from .query_integral_image import query_integral_image
23
24
25

item1 = itemgetter(1)

26
27
FONT_PATH = os.environ.get("FONT_PATH", os.path.join(os.path.dirname(__file__),
                                                     "DroidSansMono.ttf"))
28
29
30
31
STOPWORDS = set([x.strip() for x in open(os.path.join(os.path.dirname(__file__),
                                                      'stopwords')).read().split('\n')])


32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class IntegralOccupancyMap(object):
    def __init__(self, height, width, mask):
        self.height = height
        self.width = width
        if mask is not None:
            # the order of the cumsum's is important for speed ?!
            self.integral = np.cumsum(np.cumsum(255 * mask, axis=1),
                                      axis=0).astype(np.uint32)
        else:
            self.integral = np.zeros((height, width), dtype=np.uint32)

    def sample_position(self, size_x, size_y, random_state):
        return query_integral_image(self.integral, size_x, size_y, random_state)

    def update(self, img_array, pos_x, pos_y):
        partial_integral = np.cumsum(np.cumsum(img_array[pos_x:, pos_y:], axis=1),
                                     axis=0)
        # paste recomputed part into old image
        # if x or y is zero it is a bit annoying
        if pos_x > 0:
            if pos_y > 0:
                partial_integral += (self.integral[pos_x - 1, pos_y:]
                                     - self.integral[pos_x - 1, pos_y - 1])
            else:
                partial_integral += self.integral[pos_x - 1, pos_y:]
        if pos_y > 0:
            partial_integral += self.integral[pos_x:, pos_y - 1][:, np.newaxis]

        self.integral[pos_x:, pos_y:] = partial_integral


Andreas Mueller's avatar
Andreas Mueller committed
63
64
def random_color_func(word=None, font_size=None, position=None,
                      orientation=None, font_path=None, random_state=None):
Andreas Mueller's avatar
Andreas Mueller committed
65
66
67
68
69
70
71
72
73
74
75
76
77
    """Random hue color generation.

    Default coloring method. This just picks a random hue with value 80% and
    lumination 50%.

    Parameters
    ----------
    word, font_size, position, orientation  : ignored.

    random_state : random.Random object or None, (default=None)
        If a random object is given, this is used for generating random numbers.

    """
78
    if random_state is None:
79
        random_state = Random()
80
81
    return "hsl(%d, 80%%, 50%%)" % random_state.randint(0, 255)

82

83
84
85
86
87
88
89
90
91
def get_single_color_func(color):
    """Create a color function which returns a single hue and saturation with.
    different values (HSV). Accepted values are color strings as usable by PIL/Pillow.

    >>> color_func1 = get_single_color_func('deepskyblue')
    >>> color_func2 = get_single_color_func('#00b4d2')
    """
    old_r, old_g, old_b = ImageColor.getrgb(color)
    rgb_max = 255.
92
93
    h, s, v = colorsys.rgb_to_hsv(old_r / rgb_max, old_g / rgb_max, old_b / rgb_max)

94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    def single_color_func(word=None, font_size=None, position=None,
                          orientation=None, font_path=None, random_state=None):
        """Random color generation.

        Additional coloring method. It picks a random value with hue and
        saturation based on the color given to the generating function.

        Parameters
        ----------
        word, font_size, position, orientation  : ignored.

        random_state : random.Random object or None, (default=None)
          If a random object is given, this is used for generating random numbers.

        """
        if random_state is None:
            random_state = Random()
        r, g, b = colorsys.hsv_to_rgb(h, s, random_state.uniform(0.2, 1))
        return 'rgb({:.0f}, {:.0f}, {:.0f})'.format(r * rgb_max, g * rgb_max, b * rgb_max)
    return single_color_func

115
116
117
118
119
120
121
122

class WordCloud(object):
    """Word cloud object for generating and drawing.

    Parameters
    ----------
    font_path : string
        Font path to the font that will be used (OTF or TTF).
Andreas Mueller's avatar
Andreas Mueller committed
123
124
        Defaults to DroidSansMono path on a Linux machine. If you are on
        another OS or don't have this font, you need to adjust this path.
125
126
127
128
129
130
131

    width : int (default=400)
        Width of the canvas.

    height : int (default=200)
        Height of the canvas.

Andreas Mueller's avatar
Andreas Mueller committed
132
    prefer_horizontal : float (default=0.90)
133
134
135
        The ratio of times to try horizontal fitting as opposed to vertical.

    mask : nd-array or None (default=None)
Andreas Mueller's avatar
Andreas Mueller committed
136
137
138
139
140
        If not None, gives a binary mask on where to draw words. If mask is not
        None, width and height will be ignored and the shape of mask will be
        used instead. All white (#FF or #FFFFFF) entries will be considerd
        "masked out" while other entries will be free to draw on. [This
        changed in the most recent version!]
141

142
143
144
145
146
    scale : float (default=1)
        Scaling between computation and drawing. For large word-cloud images,
        using scale instead of larger canvas size is significantly faster, but
        might lead to a coarser fit for the words.

147
148
149
150
151
152
153
154
    min_font_size : int (default=4)
        Smallest font size to use. Will stop when there is no more room in this
        size.

    font_step : int (default=1)
        Step size for the font. font_step > 1 might speed up computation but
        give a worse fit.

Andreas Mueller's avatar
Andreas Mueller committed
155
    max_words : number (default=200)
156
157
158
159
160
        The maximum number of words.

    stopwords : set of strings
        The words that will be eliminated.

161
162
163
    background_color : color value (default="black")
        Background color for the word cloud image.

Andreas Mueller's avatar
Andreas Mueller committed
164
165
166
    max_font_size : int or None (default=None)
        Maximum font size for the largest word. If None, height of the image is
        used.
167

168
    mode : string (default="RGB")
169
170
        Transparent background will be generated when mode is "RGBA" and
        background_color is None.
Andreas Mueller's avatar
Andreas Mueller committed
171

172
173
174
175
176
177
178
    relative_scaling : float (default=0)
        Importance of relative word frequencies for font-size.
        With relative_scaling=0, only word-ranks are considered.
        With relative_scaling=1, a word that is twice as frequent will have twice the size.
        If you want to consider the word frequencies and not only their rank, relative_scaling
        around .5 often looks good.

179
180
    Attributes
    ----------
Andreas Mueller's avatar
Andreas Mueller committed
181
    ``words_``: list of tuples (string, float)
182
183
        Word tokens with associated frequency.

Andreas Mueller's avatar
Andreas Mueller committed
184
    ``layout_`` : list of tuples (string, int, (int, int), int, color))
185
186
        Encodes the fitted word cloud. Encodes for each word the string, font
        size, position, orientation and color.
187
188
189
190
191
192
193
194
195

    Notes
    -----
    Larger canvases with make the code significantly slower. If you need a large
    word cloud, try a lower canvas size, and set the scale parameter.

    The algorithm might give more weight to the ranking of the words
    than their actual frequencies, depending on the ``max_font_size`` and the
    scaling heuristic.
196
197
    """

198
    def __init__(self, font_path=None, width=400, height=200, margin=2,
199
                 ranks_only=None, prefer_horizontal=0.9, mask=None, scale=1,
200
201
                 color_func=random_color_func, max_words=200, min_font_size=4,
                 stopwords=None, random_state=None, background_color='black',
202
                 max_font_size=None, font_step=1, mode="RGB", relative_scaling=0):
203
204
205
206
207
208
209
210
211
212
213
214
        if stopwords is None:
            stopwords = STOPWORDS
        if font_path is None:
            font_path = FONT_PATH
        self.font_path = font_path
        self.width = width
        self.height = height
        self.margin = margin
        self.prefer_horizontal = prefer_horizontal
        self.mask = mask
        self.scale = scale
        self.color_func = color_func
Andreas Mueller's avatar
Andreas Mueller committed
215
216
        self.max_words = max_words
        self.stopwords = stopwords
217
218
        self.min_font_size = min_font_size
        self.font_step = font_step
219
220
221
        if isinstance(random_state, int):
            random_state = Random(random_state)
        self.random_state = random_state
222
        self.background_color = background_color
Andreas Mueller's avatar
Andreas Mueller committed
223
224
225
        if max_font_size is None:
            max_font_size = height
        self.max_font_size = max_font_size
226
        self.mode = mode
227
228
229
230
231
232
233
        if relative_scaling < 0 or relative_scaling > 1:
            raise ValueError("relative_scaling needs to be between 0 and 1, got %f."
                             % relative_scaling)
        self.relative_scaling = relative_scaling
        if ranks_only is not None:
            warnings.warn("ranks_only is deprecated and will be removed as"
                          " it had no effect. Look into relative_scaling.", DeprecationWarning)
234

235
236
237
238
    def fit_words(self, frequencies):
        """Create a word_cloud from words and frequencies.

        Alias to generate_from_frequencies.
239
240
241

        Parameters
        ----------
242
        frequencies : array of tuples
243
244
245
246
            A tuple contains the word and its frequency.

        Returns
        -------
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        self
        """
        return self.generate_from_frequencies(frequencies)

    def generate_from_frequencies(self, frequencies):
        """Create a word_cloud from words and frequencies.

        Parameters
        ----------
        frequencies : array of tuples
            A tuple contains the word and its frequency.

        Returns
        -------
        self
262
263

        """
264
        # make sure frequencies are sorted and normalized
265
        frequencies = sorted(frequencies, key=item1, reverse=True)
266
267
        frequencies = frequencies[:self.max_words]
        # largest entry will be 1
268
        max_frequency = float(frequencies[0][1])
269

270
        frequencies = [(word, freq / max_frequency) for word, freq in frequencies]
271

272
273
        self.words_ = frequencies

274
275
276
277
        if self.random_state is not None:
            random_state = self.random_state
        else:
            random_state = Random()
278

279
        if len(frequencies) <= 0:
280
            print("We need at least 1 word to plot a word cloud, got %d."
281
                  % len(frequencies))
282
283

        if self.mask is not None:
284
            mask = self.mask
Andreas Mueller's avatar
Andreas Mueller committed
285
286
            width = mask.shape[1]
            height = mask.shape[0]
287
            if mask.dtype.kind == 'f':
Andreas Mueller's avatar
Andreas Mueller committed
288
                warnings.warn("mask image should be unsigned byte between 0 and"
Andreas Mueller's avatar
Andreas Mueller committed
289
                              " 255. Got a float array")
Andreas Mueller's avatar
Andreas Mueller committed
290
291
292
            if mask.ndim == 2:
                boolean_mask = mask == 255
            elif mask.ndim == 3:
Andreas Mueller's avatar
Andreas Mueller committed
293
294
                # if all channels are white, mask out
                boolean_mask = np.all(mask[:, :, :3] == 255, axis=-1)
Andreas Mueller's avatar
Andreas Mueller committed
295
            else:
296
                raise ValueError("Got mask of invalid shape: %s" % str(mask.shape))
297
        else:
298
            boolean_mask = None
Andreas Mueller's avatar
Andreas Mueller committed
299
            height, width = self.height, self.width
300
        occupancy = IntegralOccupancyMap(height, width, boolean_mask)
301
302
303
304
305
306
307

        # create image
        img_grey = Image.new("L", (width, height))
        draw = ImageDraw.Draw(img_grey)
        img_array = np.asarray(img_grey)
        font_sizes, positions, orientations, colors = [], [], [], []

Andreas Mueller's avatar
Andreas Mueller committed
308
        font_size = self.max_font_size
309
        last_freq = 1.
310
311

        # start drawing grey image
312
        for word, freq in frequencies:
313
314
315
316
            # select the font size
            rs = self.relative_scaling
            if rs != 0:
                font_size = int(round((rs * (freq / float(last_freq)) + (1 - rs)) * font_size))
317
318
319
320
            while True:
                # try to find a position
                font = ImageFont.truetype(self.font_path, font_size)
                # transpose font optionally
321
                if random_state.random() < self.prefer_horizontal:
322
323
324
325
326
327
                    orientation = None
                else:
                    orientation = Image.ROTATE_90
                transposed_font = ImageFont.TransposedFont(font,
                                                           orientation=orientation)
                # get size of resulting text
328
                box_size = draw.textsize(word, font=transposed_font)
329
                # find possible places using integral image:
330
331
332
                result = occupancy.sample_position(box_size[1] + self.margin,
                                                   box_size[0] + self.margin,
                                                   random_state)
333
334
335
                if result is not None or font_size == 0:
                    break
                # if we didn't find a place, make font smaller
336
                font_size -= self.font_step
337

338
            if font_size < self.min_font_size:
339
340
341
342
343
                # we were unable to draw any more
                break

            x, y = np.array(result) + self.margin // 2
            # actually draw the text
344
            draw.text((y, x), word, fill="white", font=transposed_font)
345
346
347
            positions.append((x, y))
            orientations.append(orientation)
            font_sizes.append(font_size)
Andreas Mueller's avatar
Andreas Mueller committed
348
349
350
351
352
            colors.append(self.color_func(word, font_size=font_size,
                                          position=(x, y),
                                          orientation=orientation,
                                          random_state=random_state,
                                          font_path=self.font_path))
353
            # recompute integral image
Andreas Mueller's avatar
Andreas Mueller committed
354
355
356
            if self.mask is None:
                img_array = np.asarray(img_grey)
            else:
Andreas Mueller's avatar
Andreas Mueller committed
357
                img_array = np.asarray(img_grey) + boolean_mask
358
359
            # recompute bottom right
            # the order of the cumsum's is important for speed ?!
360
            occupancy.update(img_array, x, y)
361
            last_freq = freq
362

363
364
        self.layout_ = list(zip(frequencies, font_sizes, positions, orientations, colors))
        return self
365

366
    def process_text(self, text):
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        """Splits a long text into words, eliminates the stopwords.

        Parameters
        ----------
        text : string
            The text to be processed.

        Returns
        -------
        words : list of tuples (string, float)
            Word tokens with associated frequency.

        Notes
        -----
        There are better ways to do word tokenization, but I don't want to
        include all those things.
        """

385
386
        self.stopwords_lower_ = [word.lower() for word in self.stopwords]

387
        d = {}
388
389
        flags = (re.UNICODE if sys.version < '3' and type(text) is unicode
                 else 0)
Raphael Boidol's avatar
Raphael Boidol committed
390
        for word in re.findall(r"\w[\w']+", text, flags=flags):
391
392
393
394
            if word.isdigit():
                continue

            word_lower = word.lower()
395
            if word_lower in self.stopwords_lower_:
396
397
398
                continue

            # Look in lowercase dict.
399
            try:
400
                d2 = d[word_lower]
401
            except KeyError:
402
403
404
405
406
407
                d2 = {}
                d[word_lower] = d2

            # Look in any case dict.
            d2[word] = d2.get(word, 0) + 1

408
409
410
411
412
413
414
415
416
417
418
419
        # merge plurals into the singular count (simple cases only)
        for key in list(d.keys()):
            if key.endswith('s'):
                key_singular = key[:-1]
                if key_singular in d:
                    dict_plural = d[key]
                    dict_singular = d[key_singular]
                    for word, count in dict_plural.items():
                        singular = word[:-1]
                        dict_singular[singular] = dict_singular.get(singular, 0) + count
                    del d[key]

420
421
422
        d3 = {}
        for d2 in d.values():
            # Get the most popular case.
defacto133's avatar
defacto133 committed
423
            first = max(d2.items(), key=item1)[0]
424
425
            d3[first] = sum(d2.values())

426
        return d3.items()
427

428
    def generate_from_text(self, text):
429
430
        """Generate wordcloud from text.

431
        Calls process_text and generate_from_frequencies.
432
433
434
435
436

        Returns
        -------
        self
        """
437
438
        words = self.process_text(text)
        self.generate_from_frequencies(words)
439
440
        return self

441
442
443
444
445
    def generate(self, text):
        """Generate wordcloud from text.

        Alias to generate_from_text.

446
        Calls process_text and generate_from_frequencies.
447
448
449
450
451
452
453

        Returns
        -------
        self
        """
        return self.generate_from_text(text)

454
    def _check_generated(self):
Andreas Mueller's avatar
Andreas Mueller committed
455
        """Check if ``layout_`` was computed, otherwise raise error."""
456
457
        if not hasattr(self, "layout_"):
            raise ValueError("WordCloud has not been calculated, call generate first.")
458
459
460
461
462
463
464
465
466

    def to_image(self):
        self._check_generated()
        if self.mask is not None:
            width = self.mask.shape[1]
            height = self.mask.shape[0]
        else:
            height, width = self.height, self.width

467
        img = Image.new(self.mode, (int(width * self.scale), int(height * self.scale)),
468
                        self.background_color)
469
470
        draw = ImageDraw.Draw(img)
        for (word, count), font_size, position, orientation, color in self.layout_:
471
            font = ImageFont.truetype(self.font_path, int(font_size * self.scale))
472
473
            transposed_font = ImageFont.TransposedFont(font,
                                                       orientation=orientation)
474
            pos = (int(position[1] * self.scale), int(position[0] * self.scale))
475
            draw.text(pos, word, fill=color, font=transposed_font)
476
477
478
479
480
481
482
483
484
        return img

    def recolor(self, random_state=None, color_func=None):
        """Recolor existing layout.

        Applying a new coloring is much faster than generating the whole wordcloud.

        Parameters
        ----------
485
486
487
        random_state : RandomState, int, or None, default=None
            If not None, a fixed random state is used. If an int is given, this
            is used as seed for a random.Random state.
488
489
490
491
492
493
494
495
496

        color_func : function or None, default=None
            Function to generate new color from word count, font size, position
            and orientation.  If None, self.color_func is used.

        Returns
        -------
        self
        """
497
498
        if isinstance(random_state, int):
            random_state = Random(random_state)
499
        self._check_generated()
500
501
502

        if color_func is None:
            color_func = self.color_func
503
504
        self.layout_ = [(word_freq, font_size, position, orientation,
                         color_func(word=word_freq[0], font_size=font_size,
Andreas Mueller's avatar
Andreas Mueller committed
505
506
                                    position=position, orientation=orientation,
                                    random_state=random_state, font_path=self.font_path))
507
                        for word_freq, font_size, position, orientation, _ in self.layout_]
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
        return self

    def to_file(self, filename):
        """Export to image file.

        Parameters
        ----------
        filename : string
            Location to write to.

        Returns
        -------
        self
        """

        img = self.to_image()
        img.save(filename)
        return self

    def to_array(self):
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
Andreas Mueller's avatar
Andreas Mueller committed
535
        return np.array(self.to_image())
536

Andreas Mueller's avatar
Andreas Mueller committed
537
    def __array__(self):
538
539
540
541
542
543
544
        """Convert to numpy array.

        Returns
        -------
        image : nd-array size (width, height, 3)
            Word cloud image as numpy matrix.
        """
Andreas Mueller's avatar
Andreas Mueller committed
545
        return self.to_array()
546
547
548

    def to_html(self):
        raise NotImplementedError("FIXME!!!")